Curve and point over GF(3N).

//////////////////////////////////////////////////////////////////////////////// Parameters ---------- Field degree = 127 Discriminant = -427067 Class number = 127 Order U = R*K with R BPSW-prime ------------------------------- U = 3930061525912861057173624287137094778397646624162832523320429 R = 1310020508637620352391208095712364926132548874720944174440143 K = 3 U binary size = 202 R binary size = 200 K binary size = 2 MOV condition ------------- (3**e mod R) <> 1 for all e in 1..1143 Field GF(3**127) ---------------- Field polynomial = [1,127,2,126,2,74,2,0] Basis type = Normal Field multiplicative identity ----------------------------- I = 9#1444444444444444444444444444444444444444444444444444444444444444# J-invariant ----------- J = 9#2546211278166744651571743412152324532012305117470187544380405724# Curve (y**2 = x**3 + Ax**2 + B) of order R*K -------------------------------------------- R = 1310020508637620352391208095712364926132548874720944174440143 K = 3 A = 9#1444444444444444444444444444444444444444444444444444444444444444# B = 9#2503707542263565644442537604567155105413720456058768265246780510# Base point G (of order R) ------------------------- X = 9#1802145614788372537170244845128202454170083174688378761362676814# Y = 9#0027466558584743801174531346588086778106014481028255255865764138# ////////////////////////////////////////////////////////////////////////////////